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|. Project overview



Goal: . .
- Automated road extraction and change detection




Classification task is non-trivial

Road covered by trees Not all paved areas are roads

The classifier should take into consideration a sort of context = neural nets



Project timeline

Building
training
dataset
“Stage 2” modeling
incorporated higher-
quality training data
Modeling

P 0 0

In “Stage 3” we

- focus on change detection
and measures of uncertainty

- leverage additional image
metadata

- perform additional
hyperparameter optimization.




Results summary

We have achieved ~80% dice score with models trained on 30k images
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Il. Building a training dataset



Why use Google dataset?

The current NRI dataset consisting of 5k
remote sensing image and road annotation
image pairs ...

* is small considering task difficulty and
modeling limitations,

 contains numerous instances of poorly
annotated roads from machine learning
perspective (see example right), and

* is kept in a specialized server to ensure
confidentiality but which has limited
computing capacity.




Problematic

Image type:

coarse annotation




Problematic

Image type:

omission of major roads (not
NRI road?)

Ql’

10



Google Maps dataset

= Google Cloud Platform

9 Google Maps

-
€
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Overview

APls

Metrics

Quotas

Credentials

Support

Map Management

Map Styles

* Google provides a comprehensive public API
for Google Maps

* The parameters include centroid coordinates,
layers (e.g., road) and physical scale (selected as
0.5 x 0.5 miles? to match the NRI dataset)

* Qur initial sample consisted of 40k random
coordinates of the contiguous U.S. territory
matching the NRI sample

* Though generally
accurate, certain image
pairs do contain certain
annotation errors
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40k image pairs
from Google

Training

Human verification dataset

Example — Image discarded since Google created a road that doesn’t exist




Human verification

Check 1: Is a main (a.k.a., common use) road missing? Check 2: Is a road only partially captured?
‘ ; -?f-\;'."*" A ‘




Shortcomings of the training dataset
Treatment of minor roads

Google is inconsistent with its treatment of minor roads (e.g., driveways, farm access
roads, parking aisles).
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Shortcomings of the training dataset
Potential class imbalance

Potential class imbalance: there are many satellite images with no roads whatsoever.
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Ill. Training



Modeling overview

Dataset for training Model
* NRI 5k images * UNet
(4 states)

Dataset for training Models
* Google 30k images * UNet
(49 states)  AD-LinkNet
* GLNet

Selected methods

Model per land use type
Transfer learning
Hyperparameter
optimization
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Datasets

 Original NRI dataset (4,979 image pairs)
* |A: 1644, FL: 1165, OR: 672, ND: 1498

* Google Maps: (31,981 image pairs)

 Random coordinates across contiguous
U.S. (49 states). As such, includes road-free

locations.

* Filtered from original 38,641 images via

visual inspection

* NRI time series dataset (size TBD)




Models



Classical Convolutional Neural Network structure
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Loss function

* We use pixel-level dice loss (i.e., 1 — dice score) to measure the

estimation and prediction performance

Actual Road Actual Non-Road

Precision=

Predicted as Road

False positives o
negatives negatives

Recall

Precision XRecall

Dice Score = 2X — is between 0 and 1
Precision+Recall
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U-Net

« Contracting — Expanding + Concatenation Only convolutional and max pooling layers
o ' (no fully connected) — speed up learning
! 128 64 64 2
1
image |w{» i . . . output .
tile ] . " _| segmentation
Compensate for the information loss 3 g map
&lgl2] with the feature maps in the encoders s 5| 4 & '
Contracting Extending
path ¥ 126 128 path

Downsizing
feature maps

Upscaling
Information of
- context 1
- localization |

= conv 3x3, ReLU (unpadded)
copy and crop

§ max pool 2x2 (stride =2)
4 up-conv 2x2

=» conv 1x1
» Winner of 2015 ISBI challenge for » Pixel-wise Prediction
biomedical segmentation » Image in; segmentation out
» The architecture looks like a ‘U’ shape » Requires less training images
» Left: encoder; Right decoder » Reduce overfitting by design
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https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

AD-LinkNet

Output

Res-Block

Input
» Max-Popling

Conv(3 x 3) xk k x Res-Block
E> 3 x3 Conv, stride 2

Conv((1 x 1), (m, m/4))

Output —> Skip connection

G 3x 3]
B 3x3 Conv Conv((1x 1), (m/4, n))
{5 » 4 x 4 Transposed-Conv Conv((3 x 3), (m/4, m/4)) Attention module
v @ Addition

Part C

Part B

FIGURE 2. The structure diagram of AD-LinkNet.

Channel wise attention Series-parallel combination convolution % Channel wise attention
— s |
— e |
e i
FIGURE 3. Schematic diagram of the AD-LinkNet central part.
» Winner of CVPR's 2018 DeepGlobe road » Serial parallel combination dilated
extraction competition convolution
» Short for attention dilation-Linknet » Channel-wise attention mechanism

CSSUi . Ref. (Wu, Ming, et al. 2019 IEEE)
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GLNet

downsample .

High-level
feature maps
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» Short for Global-Local Network : clobal K §
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Methods



Build a model per land use type

* To improve model performance, we classified the images (as either
rural or urban) by land use types and then trained a model on each
of the two sets of images.

Rural Urban
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Image classification | Google dataset

We classified an image as “rural” or “urban” based on the Cropland Data Layer
(CDL), which assigns land use categories to 30-meter pixels.

* If > 20% of the CDL pixels for the = 0.5 X 0.5 mi? area captured by a Google
satellite image is “developed” land, we label it “urban.” Otherwise, the image is
“rural”

* Urban ratio (UR) = ( number of developed land CDL pixels) / ( total CDL pixels )
* UR > 0.2 - urban type: 7.9% of total dataset (2526 images)
* UR<0.2 - rural type :92.8% of total dataset

UR=0.0

Google Maps

CDL Image
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Image classification | Original NRI dataset

* The metadata for each image includes the 3 most representative land use
types. (Repeated land use types allowed for a single image.)

* We classify an image as “urban” if either
1. one of its 3 land use types is “large urban,” or
2. the list of 3 types consists entirely of “small urban” or “public road.”

e Otherwise, we classify each image as “rural”

[ Public Road Large Urban SmaII Urban][Publlc Road Small Urban, Small Urban] [ Cropland, Cropland, Public Road ]

[ Rural ]
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Transfer learning

Inpu 4 O | Classification:
ImageNet Pretrained g £ = NS & Cat, dog, boat,
(1M images) Model chair, ...
All 30k Gisst Road
ustom .
Google Nicacl annotation

Maps images

l<— Custom final Iayers——'l

“Top-level” model: this model has the same

. _ _ Road
9”'\/ thf architecture as the model immediately above. i
urban annotation

Google images Additionally, we initialize this model’s weights with the

previous model’s fitted weights.
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Hyperparameter optimization

Learning rate Loss function
A

loss

very high learning rate

low learning rate

high learning rate

| — CrassEntropy Loss
\ 2 = Dice Loss
Focal Loss

— Surface Loss

good learning rate

: § Y ' 2 \4 Y Y v
epoch
Optimizer, weight decay, and restarts Programmatic hyperparameter optimization
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Results



Stage 1
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Stage 1 | Original NRI dataset
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Original NRI dataset | Example 1 (rural)

Ground truth

Prediction
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Original NRI dataset | Example 2 (semi-developed)

Ground truth

Prediction
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Original NRI dataset | Example 3 (urban)

Ground truth

Prediction
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Stage 2
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Number of images

CSSU .

Stage 2 | Google dataset
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# images: 6435

Dice Score

* TL = Transfer learning
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Google dataset | Example 1 (rural)

KY_0388

Ad-LinkNet

Prediction (Dice: 0.91)

U-Net

Prediction (Dice: 0.885)

Ground truth

GLNet
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Google dataset | Example 2 (semi-developed)

WI_0796

Ground truth
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GLNet
Prediction (Dice: 0.843)
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Google dataset | Example 3 (urban)

Ad-LinkNet

NJ_0177

U-Net

= L4
Prgdictioff (Dice: 0.

Grofind truth
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Stage 2 | Original NRI dataset

[ Stage 1: trained on original NRI dataset ]

S R

U-Net 0.45 0.28 : 0.35  0.21 0.28  0.44
[ Stage 2: trained on Google dataset ]

I R R

AD-LinkNet (TL*) 0.56 0.23 0.61 0.51 0.15 0.59 0.56 0.22

U-Net (TL) 0.54 0.22 057 063 048 0.16 047 058 054 022 056  0.62
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Dice score histograms

Number of images

U-Net (Stage 1)

Dice Score

600 A

N w iy wv
o o o o
o o o o
L 1 L 1

Number of images

1000 A

800 -

600 -

400 -

Mean : 0.44
Stddev: 0.28
# images: 3297

00 01 02 03 04 05 06 07 08 09 10
Ratio

U-Net (Stage 2)

Mean : 0.539
Stddev: 0.217
# images: 4936

00 01 02 03 04 05 06 07 08 09 1.0
Dice Score

Number of images

1000 +

800 A

600 -

400 -

200 A

Ad-LinkNet

Mean : 0.556
Stddev: 0.223
# images: 4936

00 01 02 03 04 05 06 07 08 09 1.0
Dice Score

43



NRI dataset | Example 1 (rural)

U-Net (Stage 1)

Ad-LinkNet

Prediction (Dice: 0.497)

U-Net (Stage 2)

Prediction (Dice: 0.515)
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NRI dataset | Example 2 (semi-developed)

U-Net (Stage 1) Ad-LinkNet U-Net (Stage 2)

Prediction (Dice: 0.669) Prediction (Dice: 0.692)

’
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NRI dataset | Example 3 (urban)
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Ad-LinkNet U-Net (Stage 2)
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Stage 3
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Example 1

Model: AD-LinkNet (transfer learning, rural)
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Example 2 Model: AD-LinkNet (transfer learning, rural)
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Example 3 Model: AD-LinkNet (transfer learning, rural)
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V. Next steps



Next steps

* Determine change detection thresholds

* Classification of NRI images by terrain type (so we can then fit a separate
model for each class)

e Conformal prediction
* Hyperparameter optimization

* Consider training on higher resolution images

Alternate loss functions

Post-processing

Run models longer

Promising tweaks to GLNet

Deeper version of UNet

Cssit-
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Classification of NRI images

* The pre-defined land use types in NRI, similar to CDL for Google help
to advance the classification performance

* Select a representative class out of the polygons for certain types

19153_010103B

2017 I '
Survey

2017
Category Style

Background

Rural Transportation
Eligible Structure Points
Eligible Structure Hexagons
Small Urban

Large Urban

Small Waterbodies
Small Streams
Large Waterbodies
Large Streams




Questions?



