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EXECUTIVE SUMMARY




EXECUTIVE SUMMARY

We provide an overview of a Markov chain Monte Carlo (MCMC) [1]
method for inference of stochastic block models (SBMs)(".

Goal The Algorithm

= Determine which partition b = {b;} = The MCMC method we present
generated an observed network seeks to identify the partition that
A, assuming this was done via the maximizes the posterior
SBM. probability P(b|A).

= Moreover, we would like to detect = This greedy algorithm has an almost
such a partition in complex networks linear O(N In? N) complexity and
and in a computationally efficient works on a wide variety of network
manner. setups.

(1) Inference of modular network structure using MCMC methods, among other approximation heuristics, is referred
to as a semidefinite programming (SDP) relaxation [2]



ALGORITHM OVERVIEW

Build a multigraph (i.e., each
block is a node) and find the
merger that produces the
best partition for B blocks
where B < B’

Graph G
(i.e., adjacency matrix A)

For a given number of blocks B’,
sample new partitions b by
inspecting each node’s neighbor
until MCMC chain equilibrates

while
B>0

Get another sample Search for the model
from the posterior (until corresponding to the B that
we reach N iterations) maximizes the posterior

Perform model selection distribution (i.e., smallest loss)

3400 —

(bits)

3200

I

—325
-330
-335
—340
—345
-350
—-355

3000 —@— Original

—®— Randomized

log, P(A.b)

2800 [—

-
= —log, P(A,D)

L L1 2600

T

RS win |
12345




LIMITATIONS

i. Detectability threshold 07
0.8 -
Even planted structures cannot be
recovered for values of e = N(A;;, — Aput) 0.6 -
below =
z
4+
e’ = B\f{k), ’
where 4;, and 4,,; are the expected number 0.2 4
of edges between nodes of the same groups
and of different groups, respectively [4]. 0.0 7 _1
1.0 15 2.0 25 30
. . . €= N()\in - )\out)
li. Limit on B
Normalized mutual information (NMI)(") between the planted
This method is unable to uncover a number of ;”i'”{ggr?g pj‘rgtggs{,’j)af?gﬁﬁffi“‘b‘?;‘fff ch:)a e
groups that is larger than vertical line marks the detectability threshold ¢* = B (k) [4].

Bax < N/log N [4].

(1) Normalized mutual information (NMI) is defined as 2I1(X,Y)/(H(X) + H(Y)), where I(X,Y) is the mutual
information between X and Y, and H(X) is the entropy of X [3]. It is a measure of inference accuracy



EXAMPLES

The following are meant to highlight (1) core challenges in SBM inference inherent both in network
complexity and inference methods, as well as (2) mechanisms to meet said demands.




PRELIMINARIES

= The algorithm is implemented in the graph-tool library (a Python module).
The package also produced the following visualizations.

Key terms

= Description length is defined as £ = —log, P(A, b). Selecting the partition
with the minimum description length (MDL) is equivalent to selecting the
partition with the largest posterior probability. (For more, see slide.)

= Degree-corrected SBM (DC-SBM) is defined just like the traditional model but
considers degree homogeneity among members of a same group. (For more, see
slide.)


https://graph-tool.skewed.de/
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EXAMPLE | MULTI-MODAL POSTERIOR DISTRIBUTION

Posterior distribution of partitions of Zachary’s karate club network using the degree-corrected SBM (DC-SBM). Panels (a) to
(c) show three modes of the distribution and their respective description lengths™ ; (d) 2D projection of the posterior obtained
using multidimensional scaling [89]; (e) Marginal posterior distribution of the number of groups B [4].



(a) (b)

EXAMPLE | HETEROGENEOUS DEGREES WITHIN A GROUP

Inferred partition for a network of political blogs [61] using (a) the SBM and (b) the DC-SBM, in both cases forcing B = 2
groups. The node sizes are proportional to the node degrees. The SBM divides the network into low and high-degree groups,
whereas the DC-SBM prefers the division into political factions [4].
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(a) (b)

16000

14000

12000

10000

8000

6000

EXAMPLE | RESOLUTION LIMIT

Inference of the SBM on a simple artificial network composed of 64 cliques of size 10, illustrating the underfitting
problem: (a) The partition that maximizes the posterior probability of Eq. 10, or equivalently, minimizes the description

80

100

length of Eq. 25. The 64 cliques are grouped into 32 groups composed of two cliques each. (b) Minimum description
length as a function of the number of groups of the corresponding partition, both for the SBM and its nested variant,

which is less susceptible to underfitting, and puts all 64 cliques in their own groups [4].



THEORY
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TRADITIONAL SBM

The matrix of probabilities between groups p,.. defines the large-scale
structure of generated networks

= | et A be an undirected graph
(i.e., symmetric adjacency
matrix) with N nodes

[4]

= Each node belongs to a group
(i.e., cluster). That is,

= node i has group membership b; €
{1,...,B} and,

= vector b represents a partition of bz 3 4 s 6

. Group s
said network @
n The probablllty that amem ber Of Figure 2. The stochastic block model (SBM): (a) The matrix of probabilities chween groups p,s defines
. the large-scale structure of generated networks; (b) a sampled network corresponding to (a), where the node
group T 1S CON neCted to a colors indicate the group membership.

member in group s is p,
13



COMPLEX SBM

= The following slides cover more complex structures of networks, all of
which graph-tool can handle

= We will emphasize those structures observed often in empirical networks,
namely

= Degree heterogeneity among nodes of a same group

= Nested networks and/or very small groups

= Accounting for said complexity typically improves inference significantly,
as you may recall from examples 1 and 2

14



COMPLEX SBM

Degree-corrected SBM

= The underlying assumption of the traditional generative process is that all nodes
that belong to the same group receive on average the same number of edges [4]

= As it turns out, this fundamental aspect results in a very unrealistic property (i.e.,
this is often a poor model for many networks) [4]

= A better model is called the degree-corrected SBM, and it is defined just like the
traditional model, with the addition of the degree sequence

k= (k)

of the graph as an additional set of parameters [4]

15



COMPLEX SBM

Nested network

= Systematic underfitting (i.e., not finding
relatively small groups) is observed for a
wide variety of network datasets when
using the regular SBM [4]

[Ppour pajsoN

= This underfitting often disappears with
the nested model [4]

= |n a nested SBM, the groups themselves
are clustered into groups [4]

JIOMPOU POATSS ()

Example of a nested SBM with three levels. (4]

16



COMPLEX SBM

Edge weights Directed edges Layered networks [l
Very often networks cannot be Example: A directed link exists from The edges of the network may be
completely represented by simple species i to j if a biomass flow exists distributed in discrete “layers”,
graphs, but instead have arbitrary between them, and a weight x;; on representing distinct types of
“weights” xij on the edges. this edge indicates the magnitude of interactions

biomass flow.

Best fit of the Binomial-weighted degree-

corrected SBM for a network of terror suspects Best fit of the exponential-weighted Best fit of the DC-SBM with edge
using the strength of connection as edge ’ degree-corrected SBM for a food layers for a network of tribes, with
covariates. The edge colors and widths web, using the biomass flow as edge edge layers shown as colors. The 17
. covariates (indicated by the edge groups show two enemy tribes.

correspond to the strengths. colors and widths)



COMPLEX SBM

Group overlaps

Another way we can change the internal structure of the model is to allow the groups to overlap, i.e.
we allow a node to belong to more than one group at the same time [4].

Network of co-purchase of books about US politics [66], with groups inferred using (a) the non- overlapping DC-SBM, 18
with description length 3 = 1, 938 bits, (b) the overlapping SBM with description length % = 1,931 bits and (c) the
overlapping SBM forcing only B = 2 groups, with description length % =~ 1,946 bits [4].
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PRELIMINARIES

= \We split this section in two:
= Canonical: traditional Bayesian interpretation of the SBM

= Microcanonical: The term “microcanonical” — borrowed from statistical physics —
means that model parameters correspond to “hard” constraints that are strictly imposed
on the ensemble, as opposed to “soft” constraints that are obeyed only on average. [4]

=  Why microcanonical?

= Canonical and microcanonical cannot be distinguished from data(’), since their
marginal likelihoods (and hence the posterior probability) are identical [4]

= The algorithm uses the microcanonical interpretation (i.e., when doing MCMC, we do not
primarily sample from the priors in the canonical model) since it’s more powerful (in many
respects). More on this later.

20

(1) at least for the basic priors we use [4]



CANONICAL | PARAMETER DIAGRAM

Traditional Complex

A A

adjacency matrix /_/“
—

Parameter b = {b;} A={As} b A 0 = {0;} L
partition edge probabilities(" expected levels
degree
Hyper- B
parameter blocks
Hyperhyper- I
parameter n={n,}

group sizes 21

(1) For clarification, A is the vector of probabilities of an edge existing between any two nodes belonging to group r and s, respectively.



CANONICAL | DISTRIBUTIONS

Posterior distribution.
P(b‘A) = P(Alb)P(b) Probability P(b|A) that a node
P(A) partition b was responsible for
a network A

Traditional

P(A‘b) — /P(A‘}Lb)P(Mb)dA marginal likelihood integrated over the remaining model parameters

1 1 “flat” distribution where all partitions into N (N where {N} are the Stirling
P(b) — _—  — _— atmost B =N groups are equally likely, ay=Y {B}B! b B f th d Kind
Yyl an  where ay are the ordered Bell numbers [4] B=1 Fajm ers ot the secondxin

« 1= 2E /B(B + 1) is the expected total number of edges
B = _ s () =A(1 + 8,5)/n.ng , is local average such that that the
P(A|b) = He """“’l’-‘/(l+8”‘Mn,-ns/(1 + &y5)A expected number of edges e, = A,..n,n./(1 + &) will be
r<s equal to 1, irrespective of the group sizes n, and n, [4]

A X [Tr<sers! T e “
(A + DEBE ™ T, n Tl A T A

P(Alb) =



CANONICAL | DISTRIBUTIONS - P(b)

P(A|b)P(b) Pogt_erior distribution.
P(blA) = Probability P(b|A) that a node
Com plex ( ‘ ) P(A) partition b was responsible for

a network 4

P(B) = 1/N.
I
P(n|B) = N—1 since N —1 is the number of ways to divide N
- B—1 nonzero counts into B nonempty bins [4]
P(b|n) = [1.n/! Given the randomly sampled sizes as a constraint,
- N! we sample the partition randomly [4]

1, 1\ !
P(b) = P(b|n)P(n|B)P(B) = H]:;!, (g’ B 11) N~



CANONICAL | DISTRIBUTIONS - P(A|b)

P(A|b)P(b) Pogt_erior distribution.
P(blA) = Probability P(b|A) that a node
Com plex ( ‘ ) P(A) partition b was responsible for
a network A

Each node i is attributed with a parameter 6; that controls its expected degree, independently of its group membership. [4]

—0;0;Ap, p . . —g2 ,
ivj I“Ij(eie_ja’b,'.bj)AU y e 9, Ab,-.l),-/z(6'.2)’[){‘[”/2)1'411/2

P(A|2,6.b) =] Al ,. (Aii/2)!

i<j

We us uninformative priors for both the node propensities 8 and for A [4]

PA[b) =TT e */10%/(14-8,)A P(61b) = [J(n — 1)!8(%;6:8, , — 1)

r S § / r

P(A|b) = ./'P(AM, 0.b)P(A|b)P(0]b) dAdO

RE Hr<x ()rs!n,-(’r,-!! (n,.— ])! ’ 5
(A + DE+BBD/2 7 [T A TLAG ~ LA (e +n,—1)! i!



MICROCANONICAL | OVERVIEW

= |n this section we will
1. Describe why Peixoto likes it
Define microcanonical
Show the distributions for the traditional SBM using the microcanonical model

Draw connection to canonical

o b~ 0D

Introduce the statistics behind the algorithm

25



WHY MICROCANONICAL MODELS FOR SBM?

This approach can be used to sample modular hierarchies from the
posterior distribution, as well as to perform model selection. It allows
simultaneously for two important improvements over more traditional
inference approaches:

1. Deeper Bayesian hierarchies, with noninformative priors replaced by
sequences of priors and hyperpriors, that not only remove limitations
that seriously degrade the inference on large networks, but also reveal
structures at multiple scales;

2. A very efficient inference algorithm that scales well not only for networks
with a large number of nodes and edges, but also with an unlimited
number of modules [7].

26



MICROCANONICAL MODELS

We can re-interpret the integrated marginal
likelihood as the joint likelihood of a
microcanonical model given by

P(A|b) = P(Ale,b)P(e|b)

The term “microcanonical’ means that model
parameters correspond to “hard” constraints
that are strictly imposed on the ensemble of
graphs, as opposed to “soft” constraints that
are obeyed only on average [4].

In this particular case, P(A|e, b) is the
probability of generating a multigraph A where
the total number of edges between groups r
and s is always exactly e, without any
fluctuation allowed between samples [4]

o )
0° 2
09,0
00°% / IS
00
QJ

(a) Node partition, P(b). (b) Edge counts, P(e|b).

(c) Degrees, P(k|e,b). (d) Network, P(Al|k,e,b).

Figure 1. Illustration of the complete nonparametric genera-
tive process for the DC-SBM considered in this work. First
the partition of the nodes is sampled (a), followed by the edge
counts between groups (b), the degrees of the nodes (c) and
finally the network itself (d).

27



MICROCANONICAL | DISTRIBUTIONS

P(A|b)P(b) Pogt_erior distribution.
i i i+i P(blA) = Probability P(b|A) that a node
Microcanonical | Traditional (blA) P(A) e e
a network A
P(A|b) = P(Ale.b)P(e|b) + e = {e,,} is the matrix of edge counts between

groups
Crs = ZAij 6b,-,r6bj )
i

where ¢ , | presume, is the delta function

[l <sers!T] er!!

PAle.b) = [T 77 Tl jAi T Attt
Zers Zers/z ZE
Plete) =11 e Ll Gmnen = @anersmons
* E jsedges

 Recall that 1 = 2E /B(B + 1) is the expected total number

28
of edges



MICROCANONICAL VS CANONICAL

If we wish to impose that nodes that belong to the same group are statistically
indistinguishable, our ensemble of networks (i.e., the networks A given a partition b)
should be fully characterized by the number of edges that connects nodes of two

groups r and s [4],

€rs — ZAijab,-,erj,s (1)
i

where § (I think) is the delta function (i.e., acts as an indicator function).

If we relax somewhat our requirements, such that Eq. (1) is obeyed only on expectation,
and if we assume that the placement of edges are conditionally independent,

P(A|b) =[] Pj(Ai)
i<j

Then we obtain the setup for the the canonical formulation of the SBM model.

Important: do not confuse the probability that the edge ij exists P;; with the average number of edges 29

existing between any two nodes belonging to grouprand s p = {Prs} =A={A}



MICROCANONICAL VS CANONICAL

We can re-interpret the integrated marginal likelihood as the joint likelihood of
a microcanonical model given by

P(A|b) = P(Ale,b)P(e|b)

where e = {e,} is the matrix of edge counts between groups [4].

So P(Ale, b) is the probability of generating a multigraph A where Eq. (1) is
always fulfilled, i.e. the total number of edges between groups r and s is
always exactly e, without any fluctuation allowed between samples.

This contrasts with the parameter A,., which determines only the average
number of edges between groups, which fluctuates between samples [4].

30



MICROCANONICAL VS CANONICAL

Canonical and microcanonical cannot be distinguished from data"), since their
marginal likelihoods (and hence the posterior probability) are identical [4]

Notice that this equation P(A|b) = P(Ale, b)P(e|b) does not contain the sum
P(Alb) = X, ,P(Ale,b)P(e|b).

= Indeed, that is the proper way to write a marginal likelihood.

= However, for the microcanonical model there is only one element of the sum that fulfills the
constraint of equation (1) and thus yields a nonzero probability, making the marginal
likelihood identical to the joint. The same is true for the partition prior P(b) [4].

Conversely, the prior for the edge counts P(e|b) is a mixture of geometric
distributions with average 4, which does allow the edge counts to fluctuate,
guaranteeing the overall equivalence (between canonical and microcanocial) [4].

(1) at least for the basic priors we use [4] 31



DESCRIPTION LENGTH

With the microcanonical interpretation in mind, we may frame the posterior probability
as follows:

= |f a variable x occurs with a probability mass P(x), the amount of information necessary
to describe it is — log, P(x). Thus, we may write

P(A|b)P(b) = P(Ale,b)P(e,b) =2+

where

= —log, P(Ale,b) —log, P(e,b)

= |s called the description length of the data. It corresponds to the amount of information
necessary to encode the data A4 together with the model parameters e and b.

= Therefore, if we find a network partition that maximizes the posterior distribution, we are
also automatically finding one which minimizes the description length. [4] 32




BIAS-VARIANCE TRADEOFF

With this, we can see how the Bayesian approach just outlined prevents overfitting: As
the size of the model increases (via a larger number of occupied groups),

= it will constrain itself better to the data, and the amount of information necessary to
describe it when the model is known, — log,P(A|e, b), will decrease.

= At the same time, the amount of information necessary to describe the model itself,
—log,P(e, b), will increase as it becomes more complex.

Therefore, the latter will function as a penalty that prevents the model from becoming overly
complex, and the optimal choice will amount to a proper balance between both terms.
Among other things, this approach will allow us to properly estimate the dimension of the
model — represented by the number of groups B — in an efficient way [4].

33



ENTROPY AND MODEL SIZE

= Description length more commonly goes by ¥ = £ + S where

= L = —log,P(e, b) is the amount of information necessary to fully describe the
model, and

= S = —log,P(Ale, b) corresponds to entropy of the lowest level | = 0 of the
hierarchy.

= Notice that although minimizing S allows one to find the most likely
partition into B blocks, it cannot be used to find the best value of B itself.
This is because the minimum of S is a strictly decreasing function of B,
since larger models can always incorporate more details of the observed
data, providing a better fit [4].

34



ALGORITHM

For point estimate that maximizes posterior distribution




ALGORITHM

For point estimate that maximizes posterior distribution

The pseudocode in the next slide outlines the main features of the following function:

graph_tool.inference.minimize_ blockmodel_d1l(g, B_min=None, B_max=None, b_min=None, b_max=None,
deg corr=True, overlap=False, nonoverlap_init=True, layers=False, state_args={}, bisection_args={}, mcmc_args={}, anneal_args= [5]

{}, memc_equilibrate_args={}, shrink_args={}, mcmc_multilevel args={}, verbose=False)

Fit the stochastic block model.

Parameters: g:Graph

The graph.
B_min : int (optional, default: None)

The minimum number of blocks.
B_max : int (optional, default: None)

The maximum number of blocks.
b_min : PropertyMap (optional, default: None)

The partition to be used with the minimum number of blocks.
b_max : PropertyMap (optional, default: None)

The partition to be used with the maximum number of blocks.
deg_corr : bool (optional, default: True)

If True, the degree-corrected version of the model will be used.
overlap : bool (optional, default: False)

If True, the overlapping version of the model will be used.

nonoverlap_init : bool (optional, default: True)

If True, and overlap == True a non-overlapping initial state will be used.

layers : bool (optional, default: False)

If True, the layered version of the model will be used.

Returns:

[source]

state_args : dict (optional, default: {})

Arguments to be passed to appropriate state constructor (e.g. BlockState,
OverlapBlockState Or LayeredBlockState)

bisection_args : dict (optional, default: {})
Arguments to be passed to bisection_minimize().
mcemc_args : dict (optional, default: {})

Arguments to be passed to graph_tool.inference.BlockState.mcmc_sweep (),
graph_tool.inference.OverlapBlockState.mcmc_sweep() Or
graph_tool.inference.LayeredBlockState.mcmc_sweep().

mcmc_equilibrate_args : dict (optional, default: {})
Arguments to be passed to meme_equilibrate().
shrink_args : dict (optional, default: {})

Arguments to be passed to graph_tool.inference.BlockState.shrink(),
graph_tool.inference.OverlapBlockState.shrink() Oor
graph_tool.inf .Layer 1 .shrink().

mcmc_multilevel_args : dict (optional, default: {})
Arguments to be passed to meme_multilevel().
verbose : bool or tuple (optional, default: False)

If True, progress information will be shown. Optionally, this accepts arguments of the type
tuple of the form (level, prefix) where level is a positive integer that specifies the level
of detail, and prefix is a string that is prepended to the all output messages.

1 36

min_state : B1 or overlapBl

Or Layer

State with minimal description length.



ALGORITHM | PSEUDOCODE

For point estimate that maximizes posterior distribution

We’re given a graph G (i.e., adjacency matrix); set B =N
Initialize the graph’s partition vector G.b equal to b, (since B = N, each node is in its own block)
While B > 0
While chain has not equilibrated
For each node n; in G:

Metropolis Hastings Routine 1 — attempt to change n;'s membership (i.e., b;)

Calculate the description length for b’ (and save b’ if it has the lowest so far)

'R R Agglomerative step
LetB’'=B; B =B/ )
© ¢ Obtain the best
Build a multigraph: the B’ blocks themselves are nodes partition from a larger
Forj€{1, ... B} partition B’ > B

Fork € {1,..., n;}

Metropolis Hastings Routine 2 — attempt to merge block j and block s € {1, ..., B}

Keep track of the best merger (based on description length)

Select the best B’ — B merges to obtain the desired partition into B blocks — update b accordingly and save b

Model selection: having calculated the optimal b for each B, we select the one with minimum description length

37



METROPOLIS HASTINGS ROUTINE 1

= Given a value of B, directly obtaining the partition {bi} which minimizes

description length is in general not tractable, since it requires testing all
possible partitions [1].

= |nstead one must rely on approximate, or stochastic procedures

= The MCMC approach consists in modifying the block membership of each
node in a random fashion and accepting or rejecting each move with a
probability given as a function of the entropy difference AS

=  The simplest approach one can take is to attempt to move each vertex into
one of the B blocks with equal probability. However, this can be very inefficient

[1].

38



METROPOLIS HASTINGS ROUTINE 1

where

A better approach consists in attempting
to move a vertex from block r to s with a
probability given by

€ts + €
r— s|t) = (2)
o ) et + €eB
FIG. 1. Left: Local neighborhood of node i belonging to
block r, and a randomly chosen neighbor j belonging to block
t is the block label of a randomly chosen t. Right: Block multigraph, indicating the number of edges
neighbor, and between blocks, represented as the edge thickness. In this

example, the attempted move b; — s is made with a larger
probability than either b; — u or b; — r (no movement), since
€ts > €ty and ers > €r. [1]

€ > 0 is a free parameter (note that by
making € — oo we recover the fully random
moves described in the previous slide) [1]

The Eq. (2) above means that we attempt to guess the block membership of a given node by
inspecting the block membership of its neighbors and by using the currently inferred model
parameters to choose the most likely blocks to which the original node belongs (see Fig. 1) [1].

It should be observed that this move imposes no inherent bias; in particular, it does not attempt to
find assortative structures in preference to any other, since it depends fully on the matrix e, currently
inferred [1].

39



METROPOLIS HASTINGS ROUTINE 1

The moves with probabilities given by Eqg. (1) can be implemented efficiently. We simply write
p(r = s|t) = (1 — Rt)e;s/es + R /B, with R, = ¢B/(e; + €B) [1].

1. Sample s 2. Accept move with probability a
i. A random neighbor j of the node i 4 = min {e—mst/c D P%p(s — rt) , 1}
> pep(r — s[t)

being moved is selected, and its block
membership t = b; is obtained; where

= plis the fraction of neighbors of node i

i. The value s is randomly selected from _
which belong to block t, and

all B choices with equal probability; .
= p(s - r|t)is computed after the

ii.  With probability R; it is accepted,; proposed r — s move (i.e., with the new
values of e,;), whereas p(r - s|t) is

iv. Ifitis rejected, a randomly chosen computed before.

edge adjacent to bloc.k tis Selecteq, = The parameter B in EQ. 4 is an inverse
and the block label s is taken from its temperature, which can be used to escape
opposite endpoint [1]. local minima [1]

40



AGGLOMERATIVE STEP

In order to avoid the metastable states, we attempt to find the best configuration for some
B’ > B, and then use that configuration to obtain a better estimate for one with B blocks [1]

1. We implement this by constructing a block (multi)graph, where the blocks themselves are the
nodes (weighted by the block sizes) and the edge counts e, are the edge multiplicities between
each block node [1].

In this representation, a block merge is
simply a block membership move of a block
node, where initially each node is in its own

block [1].
—
2. The choice of moves is done with same
probability as before, i.e. via Eq. (1). In order
to select the best merges, we attempt n,,
moves for each block node, and collectively
rank the best moves for all nodes according FIG. 5. Representation of the block merges used in the
to AS. From this global ranking, we select agglomerative heuristic. Each square node is a block in the
the best B’ — B merges to obtain the desired qriginal graph, an(.i the merges (representefi as red dashed
artition into B blocks [1]. lines) correspond simply to block membership moves. [1]



OBTAIN THE BEST VALUE OF B

Having obtained the minimum of S for each B, we simply pick the model with the
lowest description length (¥, ) [3]

= Instead of description length, we
could also consider BIC or AIC [6]

2t/z‘/E
DI LWL
RO~
1 1l 1 L L L
Et/r/E
[FSTIRYISTINY IS IINY

= Efficient search for the best model:

the best value of B is obtained via
an independent one-dimensional
minimization of . | (we could use)
using a Fibonacci search based on
subsequent bisections of an initial

interval which brackets the FIG. 3. Top: Value of ¥, /E for both blockmodel variants as
. 3 a function of B for (a) the American football network of [47]
minimum [3] (with the corrections described in [48] 49]) and (b) the polit-

ical books network of [50]. Bottom: Inferred partitions with
the smallest Y. Nodes circled in red do not match the known
partitions. [3]
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MODEL SELECTION

= Since the inference algorithm is stochastic by nature, we 081
will benefit from running it many times and inspecting
the resulting empirical posterior distribution [5]

= |n particular we interested in evaluating which model [0)
classes (i.e., models with a different internal structure Q0.4+
and set of parameters) provide a better fit to the data ~

, , _ 0.2
= To this end we calculate, for instance, the marginal
posterior probability of the number of groups (see right) 00
: : : ' 6 7 8 9
= This type of analysis helps us determine whether we B
should
= select the partition with the largest posterior probability, Marginal posterior probability of the number
or of nonempty groups for the network of
characters in the novel Les Misérables,
= average over may alternative fits [5]. according to the degree-corrected SBM.
Go back to the first example for an empirical instance of 43

this bias-variance tradeoff
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FIG. 1. (a) Prescribed block structure with B = 10 and Z; =
In B/6, together with inferred parameters for different (k); (b)
Description length ¥ /E for different B and (k), for networks
sampled from (a). The vertical line marks the position of
the global minimum; (¢) NMI between the true and inferred
partitions, for the same networks as in (b); (d) Same as (b)
for different (k) and prescribed block structures. The grey
lines correspond to the threshold of Eq. In all cases we
have N = 104 [3]
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Figure 2. Model selection results for a PP model with
N = 10%, Buue = 100 and fully isolated blocks (c = 1),
using the model selection criteria described in the text. The
top panel shows the inferred value of B versus the average
degree (k) in the network. The solid lines show the theo-
retical value according to each criterion, and the data points
are direct optimization of the corresponding quantities for
actual generated network, averaged over 40 independent re-
alizations. The bottom panel shows the normalized mutual
information (NMI) between the inferred and planted parti-
tions. The dashed line marks the threshold (k) = 1 where
inference becomes impossible for N — co. [6]

GRAPH DENSITY SENSITIVITY ANALYSIS

Planted partition (PP) Models
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FIG. 8. Description length ¥ for different empirical networks . . .
b £ P ! FIG. 9. Normalized mutual information (NMI) between the

collected for 100 independent runs of the MCMC algorithm
(MC) and the agglomerative heuristic (Agg), for different ag-
glomeration ratios o.

best overall partition and each one collected for 100 indepen-
dent runs of the MCMC algorithm (MC) and the agglomera-
tive heuristic (Agg), for different agglomeration ratios o.
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FIG. 10. Description length ¥ for different empirical net-
SENSITIVITY ANALYSIS works, as well the Normalized mutual information (NMI) be-
tween the best overall partition and each one, collected for 100

independent runs of the agglomerative heuristic, for different
agglomeration ratios o.
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FIG. 7. Normalized mutual information (NMI) (see foot-
note 6) between the planted and the inferred partitions for
(top) the PP model and (bottom) the circular multipartite
model described in the text, as a function of the modular
strength ¢, for N = 10* and B = 10. The “Escape” curves
correspond to MCMC equilibrations starting from the planted
partition, and the remaining curves to the greedy agglomera-
tive heuristic with ratio ¢ shown in the legend, and n,, = 10.
All curves are averaged over 20 independent network realiza-
tions. The grey vertical dashed line corresponds to the de-
tectability threshold ¢* for the PP model, and the red dashed
line to the MDL model selection threshold of Eq. 7| (1]

MODULAR STRENGTH
SENSITIVITY ANALYSIS

PP models
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Figure 4. Top: Normalized mutual information (NMI) be-
tween the inferred and true partitions for network realizations
of the nested PP model described in the text with B; = 2,
L =5, (k) =20 and N = 10*, as a function of the assor-
tativity strength ¢, both via the standard stochastic block
model with B = 16, and the nested variant with unspeci-
fied parameters. The star symbols (x) show the value of L
for the inferred hierarchy. All points are averaged over 20
independent realizations. The gray vertical line marks the
detectability threshold ¢* when B is predetermined, and the
red line when the nested model fails to detect any structure.
Bottom: Example hierarchies inferred for the values of ¢ in-
dicated in the top panel. The left image shows the network
realization itself, and the right one the hierarchical structure
[the planted hierarchy corresponds to the one in (a)]. [6]
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FIG. 2. (a) NMI between the true and inferred partitions for
PP samples with B = 10 as a function of ¢ for different (k).
The grey (red) lines correspond to the threshold ¢* of Ref. [17]
(cypL given by Eq. ; (b) Difference between cypp, and ¢*,
for different (k) and B. 3]

ASSORTATIVITY
SENSITIVITY ANALYSIS

PP models
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Figure 9. Top: Variation of information (VI) between the
planted and obtained partitions as a function of the assorta-
tivity parameter ¢, for networks with N = 2 x 10*, generated
as described in the text. The legend indicates results obtained
with different methods: Fitting the degree-corrected stochas-
tic block model with a fixed number of blocks B = 100 (SBM),
performing model selection with the nested stochastic block
model (Nested SBM), the Louvain modularity maximization
method [12], and the Infomod method [45, 92, 93]. Bottom:
The obtained number of blocks B as a function of ¢, for the
same methods as in the top panel. The gray horizontal line
marks the planted B = 100 value. All results were obtained
by averaging over 20 network realizations. 6]

METHOD
COMPARISON

PP models
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APPENDIX




MICROCANONICAL | DISTRIBUTIONS

Posterior

Microcanonical | Complex  p 1) = PA:Ab}) _ PA.{e} {bi})  dgistribution of the
NESTED and NOT DEGREE-CORRECTED P@A) P@A4) "'j:;‘;ﬂ;‘ﬁa'

We can treat the hierarchy depth L as a latent variable as well, by placing a prior on it P(L) = 1/L;4x, Where
Lmax 1S the maximum value allowed. But since this only contributes to an overall multiplicative constant it has no
effect on the posterior distribution, and thus can be omitted.

I ~1 171 -1 This is the likelihood of a maximum-entropy
b b)) — n.n N,-(",- +1 )/2 multigraph SBM, i.e. every multigraph occurs
P(81| I—1:€]+1, I) - H el} | H (’” 1/2 with the same probability, provided they fulfill
r<s s r rs the imposed constraints
[ /By —1\""
S D [—1 -1 Same asinthe L =1 case

P(b) = —— B,_,

B!\ B —1

L - .
The joint probability of the data,

P(A.{ei},{bi}|L) = P(A|el’bO)P(bO)HP(ellb’—l’e’H’b’)P(bf) edge counts and the hierarchical o

[=1 partition {b;}



ENTROPY CALCULATION

Entropy

Traditional Degree-corrected

1 ers ]- eTS
S; = 5Zn,unsHb (nn) Se~—E—)Y Nilnk! - 5 > ersln (M)
- k

E = ) . e /2is the total number of edges,

N, is the total number of nodes with degree k,

" e, = ) ey isthe number of half-edges incident on block r, and

Hp (x) = —xInx — (1 — x) In(1 — x) is the binary entropy function [1].
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