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EXECUTIVE SUMMARY

Goal

¡ Determine which partition ! = {$%}
generated an observed network 
', assuming this was done via the 
SBM. 

¡ Moreover, we would like to detect 
such a partition in complex networks 
and in a computationally efficient 
manner.

The Algorithm

¡ The MCMC method we present 
seeks to identify the partition that 
maximizes the posterior 
probability ((!|'). 

¡ This greedy algorithm has an almost 
linear ,(- ln0 -) complexity and 
works on a wide variety of network 
setups.

We provide an overview of a Markov chain Monte Carlo (MCMC) [1]
method for inference of stochastic block models (SBMs)(1).
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(1) Inference of modular network structure using MCMC methods, among other approximation heuristics, is referred 
to as a semidefinite programming (SDP) relaxation [2]
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ALGORITHM OVERVIEW

Graph !
(i.e., adjacency matrix ")

For a given number of blocks #$, 
sample new partitions % by 

inspecting each node’s neighbor 
until MCMC chain equilibrates

Build a multigraph (i.e., each 
block is a node) and find the 

merger that produces the 
best partition for B blocks 

where # < #$

Search for the model 
corresponding to the # that 

maximizes the posterior 
distribution (i.e., smallest loss)

while 
# > 0

Perform model selection

Get another sample 
from the posterior (until 
we reach N iterations) 



LIMITATIONS

i. Detectability threshold
Even planted structures cannot be 

recovered for values of ! = # $%& − $()*
below 

!∗ = , - , 
where $%& and $()* are the expected number 
of edges between nodes of the same groups 
and of different groups, respectively [4].

ii. Limit on B
This method is unable to uncover a number of 

groups that is larger than 

,./0 ∝ #/ log# [4].
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Normalized mutual information (NMI)(1) between the planted 
and inferred partitions of a (Planted partition) PP model with 
# = 105, , = 3 and ⟨-⟩ = 3 and < = #($%& − $()*). The 
vertical line marks the detectability threshold <∗ = , ⟨-⟩ [4]. 

(1) Normalized mutual information (NMI) is defined as 2@(A, C)/(D(A) + D(C)), where @(A, C) is the mutual 
information between A and C, and D(A) is the entropy of A [3]. It is a measure of inference accuracy



EXAMPLES
The following are meant to highlight (1) core challenges in SBM inference inherent both in network 
complexity and inference methods, as well as (2) mechanisms to meet said demands.
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PRELIMINARIES

¡ The algorithm is implemented in the graph-tool library (a Python module). 
The package also produced the following visualizations.

¡ Description length is defined as Σ = −log' ((*, ,). Selecting the partition 
with the minimum description length (MDL) is equivalent to selecting the 
partition with the largest posterior probability. (For more, see slide.)

¡ Degree-corrected SBM (DC-SBM) is defined just like the traditional model but 
considers degree homogeneity among members of a same group. (For more, see 
slide.)
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Key terms

https://graph-tool.skewed.de/


EXAMPLE | MULTI-MODAL POSTERIOR DISTRIBUTION
Posterior distribution of partitions of Zachary’s karate club network using the degree-corrected SBM (DC-SBM). Panels (a) to 
(c) show three modes of the distribution and their respective description lengths(1) ; (d) 2D projection of the posterior obtained 
using multidimensional scaling [89]; (e) Marginal posterior distribution of the number of groups B [4].
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EXAMPLE | HETEROGENEOUS DEGREES WITHIN A GROUP 
Inferred partition for a network of political blogs [61] using (a) the SBM and (b) the DC-SBM, in both cases forcing B = 2 
groups. The node sizes are proportional to the node degrees. The SBM divides the network into low and high-degree groups, 
whereas the DC-SBM prefers the division into political factions [4].
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EXAMPLE | RESOLUTION LIMIT
Inference of the SBM on a simple artificial network composed of 64 cliques of size 10, illustrating the underfitting 
problem: (a) The partition that maximizes the posterior probability of Eq. 10, or equivalently, minimizes the description 
length of Eq. 25. The 64 cliques are grouped into 32 groups composed of two cliques each. (b) Minimum description 
length as a function of the number of groups of the corresponding partition, both for the SBM and its nested variant, 
which is less susceptible to underfitting, and puts all 64 cliques in their own groups [4].
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TRADITIONAL SBM

¡ Let ! be an undirected graph 
(i.e., symmetric adjacency 
matrix) with " nodes

¡ Each node belongs to a group 
(i.e., cluster). That is, 
¡ node # has group membership $% ∈

{1, … , +} and, 

¡ vector - represents a partition of 
said network

¡ The probability that a member of 
group . is connected to a 
member in group / is 012
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The matrix of probabilities between groups 012 defines the large-scale 

structure of generated networks

[4]



COMPLEX SBM

¡ The following slides cover more complex structures of networks, all of 
which graph-tool can handle 

¡ We will emphasize those structures observed often in empirical networks, 
namely
¡ Degree heterogeneity among nodes of a same group

¡ Nested networks and/or very small groups

¡ Accounting for said complexity typically improves inference significantly, 
as you may recall from examples 1 and 2
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COMPLEX SBM

Degree-corrected SBM
¡ The underlying assumption of the traditional generative process is that all nodes 

that belong to the same group receive on average the same number of edges [4]

¡ As it turns out, this fundamental aspect results in a very unrealistic property (i.e., 
this is often a poor model for many networks) [4]

¡ A better model is called the degree-corrected SBM, and it is defined just like the 
traditional model, with the addition of the degree sequence

! = {$%}
of the graph as an additional set of parameters [4]
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COMPLEX SBM

Nested network
¡ Systematic underfitting (i.e., not finding 

relatively small groups) is observed for a 
wide variety of network datasets when 
using the regular SBM [4]

¡ This underfitting often disappears with 
the nested model [4]

¡ In a nested SBM, the groups themselves 
are clustered into groups [4]
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Best fit of the Binomial-weighted degree-
corrected SBM for a network of terror suspects, 

using the strength of connection as edge 
covariates. The edge colors and widths 

correspond to the strengths.

COMPLEX SBM

Edge weights
Very often networks cannot be 

completely represented by simple 
graphs, but instead have arbitrary 

“weights” xij on the edges.

Layered networks
The edges of the network may be 
distributed in discrete “layers”, 
representing distinct types of 

interactions
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Best fit of the DC-SBM with edge 
layers for a network of tribes, with 
edge layers shown as colors. The 
groups show two enemy tribes.

Directed edges
Example: A directed link exists from 

species i to j if a biomass flow exists 
between them, and a weight !"# on 

this edge indicates the magnitude of 
biomass flow.

Best fit of the exponential-weighted 
degree-corrected SBM for a food 

web, using the biomass flow as edge 
covariates (indicated by the edge 

colors and widths).

[5]



Network of co-purchase of books about US politics [66], with groups inferred using (a) the non- overlapping DC-SBM, 
with description length Σ ≈ 1, 938 bits, (b) the overlapping SBM with description length Σ ≈ 1,931 bits and (c) the 
overlapping SBM forcing only B = 2 groups, with description length Σ ≈ 1,946 bits [4].

COMPLEX SBM

Group overlaps
Another way we can change the internal structure of the model is to allow the groups to overlap, i.e. 

we allow a node to belong to more than one group at the same time [4].
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PRELIMINARIES

¡ We split this section in two:
¡ Canonical: traditional Bayesian interpretation of the SBM

¡ Microcanonical: The term “microcanonical” — borrowed from statistical physics —
means that model parameters correspond to “hard” constraints that are strictly imposed 
on the ensemble, as opposed to “soft” constraints that are obeyed only on average. [4]

¡ Why microcanonical?
¡ Canonical and microcanonical cannot be distinguished from data(1), since their 

marginal likelihoods (and hence the posterior probability) are identical [4]

¡ The algorithm uses the microcanonical interpretation (i.e., when doing MCMC, we do not
primarily sample from the priors in the canonical model) since it’s more powerful (in many 
respects). More on this later.
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(1) at least for the basic priors we use [4]



CANONICAL | PARAMETER DIAGRAM

Traditional Complex

21
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(1) For clarification, ) is the vector of probabilities of an edge existing between any two nodes belonging to group r and s, respectively.
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degree

levels



CANONICAL | DISTRIBUTIONS

Traditional
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Posterior distribution. 
Probability !(#|%) that a node 
partition # was responsible for 

a network %

marginal likelihood integrated over the remaining model parameters

where '( are the Stirling
numbers of the second kind 
[4]

• *̅ = 2- /((( + 1) is the expected total number of edges 
• ⟨*23⟩ = *̅(1 + 523)/6267 , is local average such that that the 

expected number of edges 823 = *236263/(1 + 523) will be 
equal to *̅ , irrespective of the group sizes 62 and 63 [4] 

“flat” distribution where all partitions into 
at most B = N groups are equally likely, 
where 9: are the ordered Bell numbers [4]



CANONICAL | DISTRIBUTIONS – P(")

Complex
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Posterior distribution. 
Probability $(%|') that a node 
partition % was responsible for 

a network '

since ( − 1 is the number of ways to divide N 
nonzero counts into B nonempty bins [4]

Given the randomly sampled sizes as a constraint, 
we sample the partition randomly [4]



CANONICAL | DISTRIBUTIONS – P("|$)

Complex
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Posterior distribution. 
Probability &('|() that a node 
partition ' was responsible for 

a network (

Each node ) is attributed with a parameter *+ that controls its expected degree, independently of its group membership. [4]

We us uninformative priors for both the node propensities * and for , [4]



MICROCANONICAL | OVERVIEW

¡ In this section we will 
1. Describe why Peixoto likes it

2. Define microcanonical

3. Show the distributions for the traditional SBM using the microcanonical model

4. Draw connection to canonical

5. Introduce the statistics behind the algorithm
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WHY MICROCANONICAL MODELS FOR SBM?

This approach can be used to sample modular hierarchies from the 
posterior distribution, as well as to perform model selection. It allows 
simultaneously for two important improvements over more traditional 
inference approaches:
1. Deeper Bayesian hierarchies, with noninformative priors replaced by 

sequences of priors and hyperpriors, that not only remove limitations 
that seriously degrade the inference on large networks, but also reveal 
structures at multiple scales; 

2. A very efficient inference algorithm that scales well not only for networks 
with a large number of nodes and edges, but also with an unlimited 
number of modules [7].
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MICROCANONICAL MODELS

¡ We can re-interpret the integrated marginal 
likelihood as the joint likelihood of a 
microcanonical model given by

¡ The term “microcanonical” means that model 
parameters correspond to “hard” constraints 
that are strictly imposed on the ensemble of 
graphs, as opposed to “soft” constraints that 
are obeyed only on average [4]. 

¡ In this particular case, !(#|%, ') is the 
probability of generating a multigraph A where 
the total number of edges between groups )
and * is always exactly +,- without any 
fluctuation allowed between samples [4]
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MICROCANONICAL | DISTRIBUTIONS

Microcanonical | Traditional

28

Posterior distribution. 
Probability !(#|%) that a node 
partition # was responsible for 

a network %

• ' is edges
• Recall that )̅ = 2' /-(- + 1) is the expected total number 

of edges 

• 0 = {234} is the matrix of edge counts between 
groups 

•

where 6 , I presume, is the delta function



MICROCANONICAL VS CANONICAL

¡ If we wish to impose that nodes that belong to the same group are statistically 
indistinguishable, our ensemble of networks (i.e., the networks ! given a partition ") 
should be fully characterized by the number of edges that connects nodes of two 
groups # and $ [4],

where % (I think) is the delta function (i.e., acts as an indicator function). 

¡ If we relax somewhat our requirements, such that Eq. (1) is obeyed only on expectation, 
and if we assume that the placement of edges are conditionally independent,

Then we obtain the setup for the the canonical formulation of the SBM model.
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(1)

Important: do not confuse the probability that the edge &' exists (&' with the average number of edges 
existing between any two nodes belonging to group r and s ) = +,- = . = /,- .



MICROCANONICAL VS CANONICAL

¡ We can re-interpret the integrated marginal likelihood as the joint likelihood of 
a microcanonical model given by

where ! = #$% is the matrix of edge counts between groups [4]. 

¡ So &((|!, +) is the probability of generating a multigraph ( where Eq. (1) is 
always fulfilled, i.e. the total number of edges between groups - and . is 
always exactly #$% without any fluctuation allowed between samples. 

¡ This contrasts with the parameter /$%, which determines only the average 
number of edges between groups, which fluctuates between samples [4].
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MICROCANONICAL VS CANONICAL

¡ Notice that this equation !(#|%) = ! # (, % ! ( % does not contain the sum 
!(#|%) = ∑ ( ! # (, % ! ( % . 

¡ Indeed, that is the proper way to write a marginal likelihood. 

¡ However, for the microcanonical model there is only one element of the sum that fulfills the 
constraint of equation (1) and thus yields a nonzero probability, making the marginal 
likelihood identical to the joint. The same is true for the partition prior !(%) [4].

¡ Conversely, the prior for the edge counts ! ( % is a mixture of geometric 
distributions with average +,, which does allow the edge counts to fluctuate, 
guaranteeing the overall equivalence (between canonical and microcanocial) [4].
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Canonical and microcanonical cannot be distinguished from data(1), since their 

marginal likelihoods (and hence the posterior probability) are identical [4]

(1) at least for the basic priors we use [4]



DESCRIPTION LENGTH

With the microcanonical interpretation in mind, we may frame the posterior probability 
as follows: 

¡ If a variable ! occurs with a probability mass " ! , the amount of information necessary 
to describe it is − log' " ! . Thus, we may write

where

¡ is called the description length of the data. It corresponds to the amount of information 
necessary to encode the data ( together with the model parameters ) and *. 

¡ Therefore, if we find a network partition that maximizes the posterior distribution, we are 
also automatically finding one which minimizes the description length. [4] 32



BIAS-VARIANCE TRADEOFF

With this, we can see how the Bayesian approach just outlined prevents overfitting: As 
the size of the model increases (via a larger number of occupied groups), 

¡ it will constrain itself better to the data, and the amount of information necessary to 
describe it when the model is known, − log%& ' (, * , will decrease. 

¡ At the same time, the amount of information necessary to describe the model itself, 
− log%& (, * , will increase as it becomes more complex. 

Therefore, the latter will function as a penalty that prevents the model from becoming overly 
complex, and the optimal choice will amount to a proper balance between both terms. 
Among other things, this approach will allow us to properly estimate the dimension of the 
model — represented by the number of groups + — in an efficient way [4].
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ENTROPY AND MODEL SIZE

¡ Description length more commonly goes by Σ = ℒ + % where
¡ ℒ = −log*+ ,, . is the amount of information necessary to fully describe the 

model, and 

¡ % = −log*+ / ,, . corresponds to entropy of the lowest level 0 = 0 of the 
hierarchy.

¡ Notice that although minimizing % allows one to find the most likely 
partition into 2 blocks, it cannot be used to find the best value of 2 itself. 
This is because the minimum of % is a strictly decreasing function of 2, 
since larger models can always incorporate more details of the observed 
data, providing a better fit [4].
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ALGORITHM
For point estimate that maximizes posterior distribution
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ALGORITHM
For point estimate that maximizes posterior distribution

The pseudocode in the next slide outlines the main features of the following function:

36
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ALGORITHM | PSEUDOCODE
For point estimate that maximizes posterior distribution

1. We’re given a graph G (i.e., adjacency matrix);  set B = N

2. Initialize the graph’s partition vector G.b equal to !" (since B = N, each node is in its own block)

3. While B > 0

4. While chain has not equilibrated

5. For each node #$ in G:

6. Metropolis Hastings Routine 1 — attempt to change #$'s membership (i.e., !$)
7. Calculate the description length for !’ (and save !’ if it has the lowest so far)

8. Let B’ = B;  B = B/σ
9. Build a multigraph: the B’ blocks themselves are nodes

10. For j ∈ {1, … B’}

11. For k ∈ {1,…, #'}

12. Metropolis Hastings Routine 2 — attempt to merge block j and block s ∈ {1, …, B}

13. Keep track of the best merger (based on description length)

14. Select the best (′ − ( merges to obtain the desired partition into B blocks — update b accordingly and save b

15. Model selection: having calculated the optimal b for each B, we select the one with minimum description length
37

Agglomerative step 
Obtain the best 

partition from a larger 
partition B’ > B



METROPOLIS HASTINGS ROUTINE 1

¡ Given a value of B, directly obtaining the partition {"#} which minimizes 
description length is in general not tractable, since it requires testing all 
possible partitions [1].

¡ Instead one must rely on approximate, or stochastic procedures

¡ The MCMC approach consists in modifying the block membership of each 
node in a random fashion and accepting or rejecting each move with a 
probability given as a function of the entropy difference ∆&

¡ The simplest approach one can take is to attempt to move each vertex into 
one of the B blocks with equal probability. However, this can be very inefficient
[1].
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METROPOLIS HASTINGS ROUTINE 1

¡ A better approach consists in attempting 
to move a vertex from block r to s with a 
probability given by

where 
¡ ! is the block label of a randomly chosen 

neighbor, and 
¡ ε > 0 is a free parameter (note that by 

making ε → ∞ we recover the fully random 
moves described in the previous slide) [1]
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¡ The Eq. (2) above means that we attempt to guess the block membership of a given node by 
inspecting the block membership of its neighbors and by using the currently inferred model 
parameters to choose the most likely blocks to which the original node belongs (see Fig. 1) [1].

¡ It should be observed that this move imposes no inherent bias; in particular, it does not attempt to 
find assortative structures in preference to any other, since it depends fully on the matrix "#$ currently 
inferred  [1].

(2)

[1]



METROPOLIS HASTINGS ROUTINE 1

1. Sample !
i. A random neighbor j of the node "

being moved is selected, and its block 
membership # = %& is obtained; 

ii. The value ! is randomly selected from 
all B choices with equal probability; 

iii. With probability '( it is accepted; 

iv. If it is rejected, a randomly chosen 
edge adjacent to block # is selected, 
and the block label ! is taken from its 
opposite endpoint [1].

2. Accept move with probability )

where
¡ *(+ is the fraction of neighbors of node "

which belong to block t, and 
¡ *(! → .|#) is computed after the 

proposed . → ! move (i.e., with the new 
values of 12(), whereas *(. → !|#) is 
computed before. 

¡ The parameter β in Eq. 4 is an inverse 
temperature, which can be used to escape 
local minima [1]

40

The moves with probabilities given by Eq. (1) can be implemented efficiently. We simply write
*(. → !|#) = 1 − '# 1(5/1( + '(/8, with '( = 98/(1( + 98) [1].



AGGLOMERATIVE STEP

1. We implement this by constructing a block (multi)graph, where the blocks themselves are the 
nodes (weighted by the block sizes) and the edge counts !"# are the edge multiplicities between 
each block node [1].
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In order to avoid the metastable states, we attempt to find the best configuration for some 
B′ > B, and then use that configuration to obtain a better estimate for one with B blocks [1]

In this representation, a block merge is 
simply a block membership move of a block 
node, where initially each node is in its own 
block [1]. 

2. The choice of moves is done with same 
probability as before, i.e. via Eq. (1). In order 
to select the best merges, we attempt $%
moves for each block node, and collectively 
rank the best moves for all nodes according 
to ∆'. From this global ranking, we select 
the best (′ − ( merges to obtain the desired 
partition into B blocks [1]. [1]



OBTAIN THE BEST VALUE OF B

¡ Instead of description length, we 
could also consider BIC or AIC [6]

¡ Efficient search for the best model: 

the best value of ! is obtained via 
an independent one-dimensional 
minimization of ∑ # (we could use) 
using a Fibonacci search based on 
subsequent bisections of an initial 
interval which brackets the 
minimum [3]
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Having obtained the minimum of $ for each B, we simply pick the model with the 
lowest description length (∑ #) [3]

[3]



MODEL SELECTION

¡ Since the inference algorithm is stochastic by nature, we 
will benefit from running it many times and inspecting 
the resulting empirical posterior distribution [5]

¡ In particular we interested in evaluating which model 
classes (i.e., models with a different internal structure 
and set of parameters) provide a better fit to the data

¡ To this end we calculate, for instance, the marginal 
posterior probability of the number of groups (see right)

¡ This type of analysis helps us determine whether we 
should
¡ select the partition with the largest posterior probability, 

or

¡ average over may alternative fits [5]. 
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Marginal posterior probability of the number 
of nonempty groups for the network of 
characters in the novel Les Misérables, 

according to the degree-corrected SBM.

Go back to the first example for an empirical instance of 
this bias-variance tradeoff



RESULTS
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GRAPH DENSITY SENSITIVITY ANALYSIS
Planted partition (PP) Models
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AGGLOMERATION RATIO 
SENSITIVITY ANALYSIS
Empirical Networks
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MODULAR STRENGTH 
SENSITIVITY ANALYSIS
PP models

47

[1]



ASSORTATIVITY
SENSITIVITY ANALYSIS
PP models
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METHOD 
COMPARISON
PP models
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MICROCANONICAL | DISTRIBUTIONS

51

Posterior 
distribution of the 

hierarchical 
partition

This is the likelihood of a maximum-entropy 
multigraph SBM, i.e. every multigraph occurs 
with the same probability, provided they fulfill 
the imposed constraints

Same as in the L = 1 case

The joint probability of the data, 
edge counts and the hierarchical 
partition {"#}

We can treat the hierarchy depth L as a latent variable as well, by placing a prior on it %(') = 1/',-., where 
',-. is the maximum value allowed. But since this only contributes to an overall multiplicative constant it has no 
effect on the posterior distribution, and thus can be omitted.

Microcanonical | Complex
NESTED and NOT DEGREE-CORRECTED



ENTROPY CALCULATION

Entropy

¡ ! = ∑ $% &$%/2 is the total number of edges,

¡ )* is the total number of nodes with degree +,

¡ &$ = ∑ % &$% is the number of half-edges incident on block r, and

¡ ,- (/) = −/ ln / − (1 − /) ln(1 − /) is the binary entropy function [1].
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Traditional Degree-corrected
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