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Introduction

The aim of ”FMEM: Functional Mixed Effects Models for Longitudinal Functional Re-

sponses” (Zhu et al, 2019) is to conduct a systematic and theoretical analysis of estima-

tion and inference for a class of functional mixed effects models (FMEM). Such FMEMs

consist of fixed effects that characterize the association between longitudinal functional

responses and covariates of interest and random effects that capture the spatio-temporal

correlations of longitudinal functional responses. Focus is on sparse longitudinal data.

Motivation

Suppose we observe longitudinal functional data and covariates for n independent sub-
jects. Let

B Ti be the total number of longitudinal measurements for the i-th subject, i = 1, ..., n,
and tij be the j-th measurement time point for the i-th subject, so j = 1, ..., Ti.

B sm represent a specific grid point of the functional template space S form = 1, ...,M .

For instance, M grid points along a nerve tract in the brain. For ease of notation, it

is assumed that S = [0, 1] and 0 = s1 ≤ · · · ≤ sM = 1, but the results can be easily

extended to higher dimensions when S is a compact subset of a Euclidean space.

Specifically, for the i-th subject at time tij, we observe functional data, denoted by

yij(sm) = yi(tij, sm) for 1 ≤ m ≤ M , and a px dimensional covariate vector xi of inter-
est, denoted by xij = xi(tij), at time tij. The xi may include time-independent as well as

time-dependent covariates, such as age, gender, and genetic markers.

FMEM: Functional Mixed Effects Model

The FMEM consists of a measurement model and a hierarchical factor model:

yij(s) = µ(xij, β(s)) + zTijbi(s) + eij (1)

B µ(·, ·) is a known function

In many applications, µ(xij, β(s)) = xTijβ(s) is a linear function of xij. Since, marginally,
for a fixed s, the model above with µ(xij, β(s)) = xTijβ(s) is a standard linear mixed

effects model, this motivates us to adopt standard notation for linear mixed effects

models. Extensions to nonlinear cases is not covered in this poster but are trivial.

B β(s) = (β1(s), ..., βpβ(s))T is a pβ × 1 vector of the fixed-effect functions of s

B bi(s) = (bi1(s), ..., bipz(s))T is a vector of the random effects that characterize the spatial

temporal correlation structures across the functional domain space

B zij = zi(tij) = (zij1, ..., zijpz)T is a pz×1 vector of the random-effect covariates associated
with the random effects bi(s)

Since zij may include time-independent as well as time-dependent covariates, the

inclusion of zTijbi(s) allows us to capture a large portion of the variation in the spatial

and temporal correlation structures.

B eij(s) is a spatial random process delineated from the bi(s), i.e., after filtering out zTijbi(s)

The spatial random process eij is further decomposed into two parts,

eij(s) = eij,G(s) + eij,L(s), (2)

where eij,G(s) is a smooth stochastic process representing the global dependency that

depicts the medium-to-long-range spatial dependence, eij,L(s) is a measurement error
representing local variability, and eij1,G(·) and eij2,L(·) are independent for any j1 and j2.

Remark: bi(s), eij,L(s), and eij,G(s) are mutually independent and are iid SP(0,Σe,L),
SP(0,Σb), and SP(0,Σe,G), respectively, where SP(µ,Σ) denotes a stochastic process vector
with mean function (or function vector) µ(s) and covariance function (or function matrix)

Σ(s, s′). So the covariance structure of yi(s) = (yi1(s), ..., yiTi(s))T , denoted by Σyi(s, s′), is

Σyij1j2(s, s′) = zTij1Σb(s, s′)zij2 + Σe,G(s, s′)I(j1 = j2) + Σe,L(s, s′)I(j1 = j2, s = s′).

Estimation Procedure

Step (I): Calculate an initial estimator β̂(s) of β(s) for each s ∈ S .

First we simplify the problem by assuming there is no structure to the eij, i.e., there is

no eij,G, and perform local linear regression of Y on x: recall that, for s near sm,

β(sm) ≈ β(s) + β̇(s)(sm − s) = A(s)sh1(sm − s)

where

sh1(sm − s) = (1, (sm − s)/h1)T

A(s) =
[
β(s)h1 β̇(s)

]
is a px × 2 matrix

β̇(s) = (β̇1(s), ..., β̇px(s))T is a px × 1 vector
β̇l(s) = dβl(s)/ds for l = 1, ..., px

Then we define β̂(s) to minimize the least squares function

n∑
i=1

Ti∑
j=1

M∑
m=1

{yij(sm) − xTijA(s)sh1(sm − s)}2Kh1(sm − s),

where K(s) and Kh(s) = h−1
1 K(s/h1) are the kernel function and the rescaled kernel

function with bandwidth h1, respectively. In practice, we may select h1 via LOOCV.

Step (II): Estimate the covariance operators Σb(s, s′), Σe,G(s, s′), and Σe,L(s, s′), which, note,
fully specify the distributions of the bi(s), eij,G(s), and eij,L(s), respectively.

(S1) We estimate the covariance surfaces Σbkk′(s, s′) and Σe(s, s′) on a point-by-point

basis. (Note (k, k′) is the entry index.) That is, for each (sm, sm′) ∈ S × S we regress

the residuals from Step (I) ûij(s) = yij(s) − xTijβ̂(s) on the random effect covariates

zij to find the minimizers Σ̂LS
b (sm, s′

m) and Σ̂LS
e (sm, s′

m) of the least squares function
n∑
i=1

∑
j1 6=j2

{
ûij1(sm)ûij2(sm′) − zTij1Σb(sm, sm′)zij2

}2

+
n∑
i=1

Ti∑
j=1

{
ûij(sm)ûij(sm′) − zTijΣb(sm, sm′)zij − Σe(sm, sm′)

}2
,

where Σe(s, s′) is the covariance function of eij(s).

(S2) Using the least squares (LS) estimates from (S1), we use a local constant smoother

to produce the covariance surface estimates Σ̂bkk′(s, s′) and Σ̂e,G(s, s′) by minimizing

min
Σbkk′(s,s′)

M∑
m,m′=1

{
Σ̂LS
bkk′(sm, sm′) − Σbkk′(s, s′)

}2
Kh2(sm − s)Kh2(sm′ − s′)

min
Σe,G(s,s′)

∑
m6=m′

{
Σ̂LS
e (sm, sm′) − Σe,G(s, s′)

}2
Kh3(sm − s)Kh3(sm′ − s′)

Finally, we perform the spectral decomposition of Σ̂bkk′(s, s′) and Σ̂e,G(s, s′) to
calculate Σ̂e,L(sm, s′

m).

Step (III): We proceed as in Step (I): we run local linear regression of Y on x, but this time
we include the estimated covariance function Σ̂yi,G(s, s′) to get the refined estimator β̃(s).
We use the estimated covariance operators obtained from Step (II) to improve the esti-

mate in Step (I) with a refined estimator of β(s), denoted by β̃(s), the minimizer of

n∑
i=1

M∑
m=1

[{
yi(sm) −XT

i A(s)shβ(sm − s)
}T

Σ̂yi,G(sm, sm)−1/2
]⊗2

Khβ(sm − s)

where a⊗2 = aaT for any vector a, and Σ̂yi,G(s, s′) is the estimator of the covariance func-
tion of ui,G(s) = (ui1,G(s), ..., (uiTi,G(s))T where uij,G(s) = zTijbi(s) + eij,G(s). We obtained

Σ̂yi,G(s, s′) based on Σ̂b(s, s′) and Σ̂e,G(s, s′).

Step (IV): Obtain individual random effect functions uij,G(s) = zTijbi(s) + eij,G(s).

We produce estimates for µij,G(s) using local linear regression on the residuals based on
the new β(s) estimate, i.e., {ũij(sm) = yij(sm) − xTijβ̃(sm)}Mm=1. Furthermore, if there is an

interest in recovering the subject-specfic random effect bi(s), one could use the BLUPs.

Application: Modeling white matter across the corpus callosum
over time

The researchers fit FMEM on MRI data collected

on 253 infants over several visits. More specifically,

the response yij(s) ∈ [0, 1] is fractional anisotropy
(FA) – a useful measure of connectivity in the brain

– that can be derived from a diffusion tensor imag-

ing (DTI) – an MRI method – dataset. The func-

tional template space S is the corpus callosum, the

black arc with red boarder highlighted in Figure 1.

In this manner yij(s) is the FA value for the ith pa-

tient at position s ∈ [0, 45] (i.e., arc length) on day

j = [0, 8000]. The goal of the analysis is to assess

the development of brain connectivity over time.

Figure 1. 3D visualization of the corpus

callosum in the sagittal view

They fit FMEM (1) and (2) with xi = (1,Gender, log(Age), log(Age)2)T and zi =
(1, log(Age))T to the selected FA tracts obtained from all 253 subjects. The coefficient

Figure 2. (b) and (c) FA’s along the corpus callosum

obtained from 2 selected subjects A (b) and B (c) with 2

or 3 visits. Different visits for the same subjects are

indicated by color. (d) and (e) FA values varying over

age at selected locations: arclength=18.66 (d) and

arclength=31.49 (e) along the corpus callosum for all

253 subjects, with green and blue lines corresponding

to subjects A and B, respectively. Red dashed lines

represent the fitted lines for the male group.

functions associated with log(Age) and

log(Age)2 were included to detect age

effect in FA changes. Additionally, as

shown in Figure 2, there are random

subject-to-subject variations in FA mea-

sures at each grid point along this tract as

well as those in the age effect on FAmea-

sures. The researchers included random

intercept and age effects in the model

in order to account for the inter-subject

variations.

The estimated functional coefficients

of β(s) and their 95% simultaneous confi-

dence bands were constructed. Figure 3

presents the estimated coefficient func-

tions along with their 95% simultaneous

confidence bands. The intercept function

describes the overall trend of FA along

the corpus callosum. In general, the cen-

tral regions of the corpus callosum show

smaller FA values, whereas the peripheral

regions show larger FA values. Note that,

for the gender effect, the simultaneous

confidence band contains the zero horizontal line, whereas the zero line is out of the 95%

simultaneous confidence band for the age effect, indicating a significant age effect.

Figure 4 shows the top eigen-

functions for b and eG, respec-

tively. It shows that 31.4% of

the variability is explained by the

first principal component (PC) for

b and 18.2% by the first PC for eG.
Overall, the first 8 PCs for b ex-
plain 62.5% of the total variabil-

ity, whereas the first 8 PCs for eG
explain 32.18% of the total vari-

ability. This indicates that the ran-

dom effects b capture most of the
variation in the data. Within b,
53.6% and 8.9% of the total vari-

ation are explained by the ran-

dom functional intercept and the

subject-specific random slope, re-

spectively. The within-curve mea-

surement error explains only 5.4%

of the total variation.

Figure 3. 95% simultaneous confidence bands for coefficient

functions.

Figure 4. (a) (b) The first five estimated eigenfunctions ψbl,k(s),
l = 1, 2 for the random intercept and slope processes. ψb1,k(s)
and ψb2,k(s) correspond to the random functional intercept and

random functional slope, respectively. (c) The first four

estimated eigenfunctions ψek(s) for the visit specific deviation
process.
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